Efficient learning of robust quadruped bounding using pretrained neural networks
نویسندگان
چکیده
Bounding is one of the important gaits in quadrupedal locomotion for negotiating obstacles. The authors proposed an effective approach that can learn robust bounding more efficiently despite its large variation dynamic body movements. first pretrained neural network (NN) based on data from a robot operated by conventional model-based controllers, and then further optimised NN via deep reinforcement learning (DRL). In particular, designed reward function considering contact points phases to enforce gait symmetry periodicity, which improved performance. NN-based feedback controller was learned simulation directly deployed real quadruped Jueying Mini successfully. A variety environments are presented both indoors outdoors with authors’ approach. shows efficient computing good results over uneven terrain.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Improved Bottleneck Features Using Pretrained Deep Neural Networks
Bottleneck features have been shown to be effective in improving the accuracy of automatic speech recognition (ASR) systems. Conventionally, bottleneck features are extracted from a multi-layer perceptron (MLP) trained to predict context-independent monophone states. The MLP typically has three hidden layers and is trained using the backpropagation algorithm. In this paper, we propose two impro...
متن کاملLearning Semantic Prediction using Pretrained Deep Feedforward Networks
The ability to predict future environment states is crucial for anticipative behavior of autonomous agents. Deep learning based methods have proven to solve key perception challenges but currently mainly operate in a non-predictive fashion. We bridge this gap by proposing an approach to transform trained feed-forward networks into predictive ones via a combination of a recurrent predictive modu...
متن کاملCan Pretrained Neural Networks Detect Anatomy?
Convolutional neural networks demonstrated outstanding empirical results in computer vision and speech recognition tasks where labeled training data is abundant. In medical imaging, there is a huge variety of possible imaging modalities and contrasts, where annotated data is usually very scarce. We present two approaches to deal with this challenge. A network pretrained in a different domain wi...
متن کاملEfficient Parameters Selection for CNTFET Modelling Using Artificial Neural Networks
In this article different types of artificial neural networks (ANN) were used for CNTFET (carbon nanotube transistors) simulation. CNTFET is one of the most likely alternatives to silicon transistors due to its excellent electronic properties. In determining the accurate output drain current of CNTFET, time lapsed and accuracy of different simulation methods were compared. The training data for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IET cyber-systems and robotics
سال: 2022
ISSN: ['2631-6315']
DOI: https://doi.org/10.1049/csy2.12062